banner-tegeler-buecherstube-hdneu.jpg

banner-buchhandlung-menger-hdneu.jpg

banner-buchhandlung-haberland-hdneu.jpg

banner-buchhandlung-anagramm-hd_1.jpg

0

Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology

Biological Magnetic Resonance 23

Erschienen am 19.11.2010, 1. Auflage 2005
320,99 €
(inkl. MwSt.)

Vorbestellung vorauss. lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781441934567
Sprache: Englisch
Umfang: xxiv, 522 S., 261 s/w Illustr., 522 p. 261 illus.
Einband: kartoniertes Buch

Beschreibung

InhaltsangabeSection I. Instrumentation and Methodology Chapter 1 Saturation Recovery EPR; Sandra S. Eaton and Gareth R. Eaton 1. Motivation 2. Brief History 3. Information Content of Saturation Recovery Curves 4. Practical Aspects of Experimental Methodology 5. Applications 6. Prognosis 7. References Chapter 2 Loop-Gap Resonators; George A. Rinard and Gareth R. Eaton 1. Introduction 2. History 3. Why should one use loop-gap resonators? 4. Basics 5. Topologies of loop gap resonators 6. Coupling to Resonators 7. Design equations 8. Magnetic Field Modulation 9. LGR for Time Domain EPR 10. Selection of the Q of a LGR 11. Measuring B1 in the LGR 12. Variable Temperature 13. Mechanical Considerations 14. Commercial Resonators 15. Applications of Lumped-Circuit Resonators 16. Further information 17. References Chapter 3 EPR Interfaced To Rapid Mixing; Charles P. Scholes 1. Introduction 2. The Loop Gap Resonator Based Stopped-Flow System 3. Dielectric Resonator-based Stopped-Flow EPR 4. Applications of Stopped-Flow and Flow EPR to Naturally Occurring Transient Radicals 5. Future Developments and Applications of Flow and Stopped-Flow EPR 6. References Chapter 4 Application of Angle-Selected Electron Nuclear Double Resonance to Characterize Structured Solvent in Small Molecules and Macromolecules; Devkumar Mustafi and Marvin W. Makinen 1. Introduction 2. ENDOR Assignment of Molecular Structure and Conformation with VO2+ and Nitroxyl Spin-Labels 3. ENDOR Characterization of Structured Solvent in Small Molecule Complexes and in Proteins 4. Future Perspectives and Concluding Remarks 5. References Chapter 5 Solution-ENDOR of Some Biologically Interesting Radical Ions; Fabian Gerson and Georg Gescheidt 1. Solution ENDOR Spectroscopy 2. Quinones 3. Porphyrinoids 4. References Chapter 6 Electron-Electron Double Resonance; Lowell D. Kispert 1. Introduction 2. Instrumental Techniques 3. Dynamics of Biomolecules in Liquid Crystals, Glassy Solids, Polymers and Crystals 4. Practical Aspects of Measurements 5. References Chapter 7 Digital Detection by Time-Locked Sampling in EPR; James S. Hyde, Theodore G. Camenisch, Joseph J. Ratke, Robert A. Strangeway, Wojciech Froncisz 1. Introduction 2. Time Locking and Superheterodyne Detection - EPR Instrument Design Background 3. Time-Locked Subsampling Detection for CW EPR 4. Pulse Saturation Recovery Using Time-Locked Subsampling 5. Selected Engineering Considerations 6. Conclusion 7. References Chapter 8 Measurement of Distances Between Electron Spins Using Pulsed EPR; Sandra S. Eaton and Gareth R. Eaton 1. Introduction 2. Fundamental Principles of Interaction between Electron Spins 3. Distance between Two Slowly Relaxing Centers 4. Distance between a Slowly Relaxing Center and a Rapidly-Relaxing Center 5. Some Practical Considerations 6. Recent Examples for Distances between Two Slowly-Relaxing Radicals 7. Recent Examples for Distances between a Rapidly-Relaxing and a Slowly-Relaxing Spin 8. Prognosis 9. References Section II. Motion, Proteins, and Membranes Chapter 9 ESR and Molecular Dynamics; Jack H. Freed 1. Motional Narrowing and Organic Radicals 2. Double Resonance and Molecular Dynamics 3. Slow Motional ESR and Molecular Dynamics 4. High Field ESR and Molecular Dynamics 5. Spin-Echoes and

Autorenportrait

Prof. Sandra S. Eaton is John Evans Professor in the Department of Chemistry and Biochemistry at the University of Denver. Her research interests include distance measurements in proteins, EPR of metal ions in biological systems, electron spin relaxation times, and EPR instrumentation. The Eatons co-organize an annual EPR Symposium in Denver. Prof. Gareth R. Eaton is John Evans Professor in the Department of Chemistry and Biochemistry at the University of Denver. His research interests include EPR instrumentation, distance measurements in proteins, EPR of metal ions in biological systems, and electron spin relaxation times. Dr. Lawrence J. Berliner is currently Professor and Chair of the Department of Chemistry and Biochemistry at the University of Denver after retiring from Ohio State University, where he spent a 32-year career in the area of biological magnetic resonance (EPR and NMR). He is the Series Editor for Biological Magnetic Resonance, which he launched in 1979.

Inhalt

Section I. Instrumentation and Methodology Chapter 1 Saturation Recovery EPR; Sandra S. Eaton and Gareth R. Eaton 1. Motivation 2. Brief History 3. Information Content of Saturation Recovery Curves 4. Practical Aspects of Experimental Methodology 5. Applications 6. Prognosis 7. References Chapter 2 Loop-Gap Resonators; George A. Rinard and Gareth R. Eaton 1. Introduction 2. History 3. Why should one use loop-gap resonators? 4. Basics 5. Topologies of loop gap resonators 6. Coupling to Resonators 7. Design equations 8. Magnetic Field Modulation 9. LGR for Time Domain EPR 10. Selection of the Q of a LGR 11. Measuring B1 in the LGR 12. Variable Temperature 13. Mechanical Considerations 14. Commercial Resonators 15. Applications of Lumped-Circuit Resonators 16. Further information 17. References Chapter 3 EPR Interfaced To Rapid Mixing; Charles P. Scholes 1. Introduction 2. The Loop Gap Resonator Based Stopped-Flow System 3. Dielectric Resonator-based Stopped-Flow EPR 4. Applications of Stopped-Flow and Flow EPR to Naturally Occurring Transient Radicals 5. Future Developments and Applications of Flow and Stopped-Flow EPR 6. References Chapter 4 Application of Angle-Selected Electron Nuclear Double Resonance to Characterize Structured Solvent in Small Molecules and Macromolecules; Devkumar Mustafi and Marvin W. Makinen 1. Introduction 2. ENDOR Assignment of Molecular Structure and Conformation with VO2+ and Nitroxyl Spin-Labels 3. ENDOR Characterization of Structured Solvent in Small Molecule Complexes and in Proteins 4. Future Perspectives and Concluding Remarks 5. References Chapter 5 Solution-ENDOR of Some Biologically Interesting Radical Ions; Fabian Gerson and Georg Gescheidt 1. Solution ENDOR Spectroscopy 2. Quinones 3. Porphyrinoids 4. References Chapter 6 Electron-Electron Double Resonance; Lowell D. Kispert 1. Introduction 2. Instrumental Techniques 3. Dynamics of Biomolecules in Liquid Crystals, Glassy Solids, Polymers and Crystals 4. Practical Aspects of Measurements 5. References Chapter 7 Digital Detection by Time-Locked Sampling in EPR; James S. Hyde, Theodore G. Camenisch, Joseph J. Ratke, Robert A. Strangeway, Wojciech Froncisz 1. Introduction 2. Time Locking and Superheterodyne Detection - EPR Instrument Design Background 3. Time-Locked Subsampling Detection for CW EPR 4. Pulse Saturation Recovery Using Time-Locked Subsampling 5. Selected Engineering Considerations 6. Conclusion 7. References Chapter 8 Measurement of Distances Between Electron Spins Using Pulsed EPR; Sandra S. Eaton and Gareth R. Eaton 1. Introduction 2. Fundamental Principles of Interaction between Electron Spins 3. Distance between Two Slowly Relaxing Centers 4. Distance between a Slowly Relaxing Center and a Rapidly-Relaxing Center 5. Some Practical Considerations 6. Recent Examples for Distances between Two Slowly-Relaxing Radicals 7. Recent Examples for Distances between a Rapidly-Relaxing and a Slowly-Relaxing Spin 8. Prognosis 9. References Section II. Motion, Proteins, and Membranes Chapter 9 ESR and Molecular Dynamics; Jack H. Freed 1. Motional Narrowing and Organic Radicals 2. Double Resonance and Molecular Dynamics 3. Slow Motional ESR and Molecular Dynamics 4. High Field ESR and Molecular Dynamics 5. Spin-Echoes and Molecular Dynamics 6. Two-Dimensional Fourier Transform ESR 7. Prospectus 8. Glossary of Abbreviations

Weitere Artikel aus der Kategorie "Medizin/Klinische Fächer"

Vorbestellung vorauss. lieferbar innerhalb 1 - 2 Wochen

89,99 €
inkl. MwSt.

Vorbestellung vorauss. lieferbar innerhalb 1 - 2 Wochen

25,00 €
inkl. MwSt.

Lieferbar innerhalb 24 Stunden

9,99 €
inkl. MwSt.
Alle Artikel anzeigen